Ground-Water Pumping Causes Arizona to Sink

Larry D. Fellows
Director and State Geologist

The land has subsided in several parts of southern Arizona since 1950 and is still subsiding. Two dish-shaped areas in Maricopa and Pinal Counties, as much as 6 miles wide, have subsided more than 15 feet at their centers. Gigantic open cracks (fissures), commonly 5-10 feet wide and 10-20 feet deep, have developed along their margins (Figure 1). Subsidence and related features have already caused serious problems and have the potential to cause even more. Around Phoenix, urban development is moving into subsiding areas that were once predominantly rural. Subsidence is taking place within the City of Tucson.

What causes the land to subside? Subsidence is taking place in southern Arizona because ground water has been pumped over an extended period of time faster than recharge has occurred. Subsidence does not happen in northern Arizona because the geologic setting is different. Southern Arizona is susceptible to subsidence because it's in what geologists call the "Basin and Range" province, which consists of alternating linear mountain areas and structural basins.

The Basin and Range, which extends northward from western Texas and northern Mexico into southern Oregon and Idaho (Figure 2), developed from about 15 to 5 million years ago in response to crustal stretching. Rocks cracked and broke into large blocks,

(continued on page 2)

Figure 1. Fissures (F), which appear to stop at the edge of irrigated cotton fields (CF) southeast of Casa Grande in Pinal County, developed at right angles to existing stream channels. After heavy rainfall, runoff drains in the direction of the arrows (D) into the fissures. Channels on the right side of the fissures have been abandoned (A). Photograph by L. D. Fellows.
some of which moved downward with respect to others and formed basins (Figure 3). Most of the blocks are bounded by fault zones, along which the fracturing and movement took place. Gravel, sand, silt, and clay particles, the weathering products of rocks in the adjacent mountain blocks, were transported by streams and deposited in the basins. The process took place so long that 5,000-10,000 feet or more of sediment filled some of the basins.

Basin-bounding fault zones may be more than a mile away from the present-day mountain fronts and buried beneath several hundred feet of sand and gravel. Basin-margin areas underlain by relatively thin sediment deposits are highly susceptible to overpumping. Sediment in the basins became saturated with water, which occupies the spaces between the individual particles of rock. Ground water can be pumped readily from layers known as aquifers. Subsidence occurs when an aquifer is dewatered and the sand and gravel particles within it get squeezed together more closely. Compaction reduces the porosity of the aquifer and, if enough water is removed, the overlying land surface slowly sinks.

What kinds of problems are caused by land subsidence? Subsidence and earth fissures cause varied problems (Figures 1, 4–7). Fissures have cut highways, roads, airports, canals, building foundations, swimming pools, and ponds. Fissures have caused buildings to be condemned. (Not all foundation cracking is due to land subsidence induced by ground-water pumping.) In some areas people use open fissures as dumps and create potential for liquid waste to percolate downward into an aquifer. Open fissures are potential hazards to people who are unaware of their presence.

Subsidence can cause the land slope to change. This disrupts irrigation and sewage systems, which depend on gravity flow. Farmers who irrigate crops have had to abandon fields or have them releveled so that the irrigation water flows in the right direction. One of the first indicators of subsidence is the collapse of water well casings. Streams or washes that once drained in a certain direction may now channel water into other areas, causing water to stand or flooding to occur where it never did before. Land surveyors have difficulty closing traverses if any of the benchmarks in the traverse have subsided.

What parts of Arizona are subsiding? Many basins in southern Arizona contain more than 1,600 feet of sedimentary deposits (Figure 8). Excessive pumping in a number of them has already induced subsidence and fissures. Additional impacts will occur if pumping continues. Subsidence can be expected even in basins that have not yet been affected if ground-water pumping exceeds recharge.

Subsidence has been known in Pinal County since 1927 and in the Phoenix and Tucson areas since the 1950s. The lead article in the Spring 1998 issue of Arizona Geology is a description of a 4,400-foot-long...
Figure 3. This generalized cross section depicts a hypothetical Basin-and-Range basin in Southern Arizona.

Figure 4. An earth fissure cut this road in Pinal County several miles east of Chandler Heights. Photograph by R. C. Harris.

earth fissure that formed in the Harquahala Plain west of Phoenix after a heavy rain associated with Hurricane Nora in September 1997. Subsidence is suspected in other basins, but has not yet been measured.

The Basin and Range part of Arizona is not the only place where subsidence due to ground-water pumping is a known or potential problem. Las Vegas has been experiencing serious subsidence and related problems for several years. Subsidence has been recorded also near Deming, New Mexico. Potential exists for subsidence and related problems to occur in other basins within the Basin and Range province outside of Arizona.

How does one know that the land is subsiding? Subsidence takes place so gradually that it's hardly noticeable. It makes no noise and doesn't cause the ground to shake. Until a few years ago, subsidence could be confirmed only by conducting a land survey across the suspected area. A new method involves making repeat satellite-radar images. By this method, called radar interferometry, minute changes in the altitude of the land surface can be detected. Using this technique, the NPA Group, Edenbridge, United Kingdom, measured subsidence in western Maricopa County and the central Tucson basin. According to Ren Capes, Manager of Applications Development, the NPA Group determined that the central Tucson area subsided a maximum of 9 cm (3.5 in) between June 1993 and March 1997. This study, in combination with a previously generated result using a one-year temporal separation, indicated that the rate of subsidence was between 1.5 and 2.0 cm (0.6-0.8 in) per year for that period. A smaller area 5 mi southwest of the central area subsided about 6 cm (2.4 in) from June 1993 to March 1997.

Can subsidence be stopped? Subsidence can be stopped by slowing the rate of ground-water pumping so that recharge takes place as fast as or faster than pumping. If water is pumped back into the ground, however, subsidence will not be reversed. Once done, it's permanent.

Where can I get more information? The Arizona Geological Survey (AZGS), in cooperation with the Arizona Department of Water Resources (ADWR) and a dozen other governmental agencies, established the Center for Land-Subsidence and Earth-Fissure Information (CLASEFI). The purpose of CLASEFI is to serve as a central source of information about subsidence and related problems. Raymond C. Harris (AZGS) is the coordinator of CLASEFI activities.

Much information has been published about the cause and impacts of land subsidence. The AZGS published "Land Subsidence and Earth Fissures in Arizona," (Down-to-Earth 3) and bibliographies of published and unpublished maps and reports on subsidence (Open-File Reports 95-8 and 95-11). In addition, the AZGS maintains a web site that includes subsidence information. The ADWR, which periodically measures water levels in wells to determine changes, is now measuring land subsidence with Global Positioning System equipment. The U.S. Geological Survey, Water Resources Division, has released reports that describe land subsidence. The Water Resources Research Center and the Department of Geosciences at the University of Arizona also have information about subsidence on their web pages.

Visit the AZGS web page (www.azgs.state.az.us) for more information and links to other web sites.
Figure 5. The land subsided more than 15 feet in Pinal County south of Eloy from 1950 to 1985. The marker on the pole shows where the land surface was in 1952. More subsidence has undoubtedly taken place since 1985. Photograph provided by H.H. Schumann.

Figure 6. Subsidence broke and offset this irrigation canal in western Maricopa County. Photograph by L.D. Fellows.

Figure 7. Earth fissures such as this one just east of the intersection of Baseline and Sossaman Road near Chandler Heights in Maricopa County are used commonly as dumps. Photograph by L. D. Fellows.

Figure 8. This map shows basins in the Basin and Range province in southern Arizona that contain more than 1,600 feet of sediment (shaded). Subsidence and related problems have taken place within those areas shown in red.

This map was modified from Depth-to-Bedrock Map, Basin and Range Province, Arizona, 1980, J.M. Oppenheimer and J.S. Sumner, scale 1:1,000,000.
Just Released

The Arizona Geological Survey released the following items since the Summer issue of Arizona Geology was published:

Geology of the Socorro Mine-White Marble Mine area, western Harquahala Mountains, west-central Arizona:

A northeast-trending belt of steeply dipping Paleozoic rocks in the footwall of the Harquahala thrust has been complexly deformed. These rocks form the structural setting for gold mineralization in the Socorro mine, a gypsum mine in the Kaibab Formation, and decorative stone in the Martin Formation in the White Marble mine.

Geologic map of the northwestern part of the Greenback Creek 7 1/2' Quadrangle, Gila County, Arizona:

The study area covers part of the west flank of the Sierra Ancha northeast of Roosevelt Lake. Older Proterozoic granite is overlain by flat lying to gently tilted strata of the Proterozoic Apache Group and intruding diabase sills. Tertiary conglomerate and sandstone were deposited on the bedrock and in the flanking Tonto basin.

Brief overview of the geology and mineral resources of the Tonto basin, Gila County, Arizona:

This report includes a description of the geologic history and tectonics, mineral deposits and mineralization, and potential for occurrence of mineral resources. It contains a geologic map and a map that shows locations of mines, pits, prospects, mineralized sites, and oil and gas wells.

Preliminary bedrock geologic map and cross sections of the Windy Hill 7 1/2' Quadrangle, Gila County, Arizona:

Bedrock is predominantly middle Proterozoic Apache Group strata, middle Proterozoic diabase, and lower Paleozoic sandstone and carbonates. Tertiary conglomerate and sandstone have not been significantly tilted or faulted. The study area straddles Roosevelt Lake.

Historical geomorphology and hydrology of the Santa Cruz River:

This report provides information about the character of the Santa Cruz River for the Arizona Stream Navigability Commission to use in determining navigability at the time of Statehood.

Index of samples of wells drilled for oil and gas in Arizona:

This is a tabulation of more than 600 oil, gas, helium, carbon dioxide, geothermal, and other wells drilled in Arizona. Total depth and intervals from which samples were taken are included.

Geologic framework of the Catalina foothills, outskirts of Tucson (Pima County, Arizona):

The author mapped and described the Cenozoic rock units in the Foothills and the geomorphic surfaces that developed on them during the past few million years.

Ordering Information

You may purchase publications at the AZGS office or by mail. Address mail orders to AZGS Publications, 416 W. Congress St., Suite 100, Tucson, AZ 85701. Orders are shipped by UPS, which requires a street address for delivery. All mail orders must be prepaid by a check or money order payable in U.S. dollars to the Arizona Geological Survey or by Master Card or VISA. Do not send cash. Add 7% sales tax to the publication cost for orders purchased or mailed in Arizona. Order by publication number and add these shipping and handling charges to your total order:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Shipping & Handling Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2.00</td>
<td>add $1.00</td>
</tr>
<tr>
<td>2.00 - 10.00</td>
<td>add 3.50</td>
</tr>
<tr>
<td>10.01 - 20.00</td>
<td>add 5.00</td>
</tr>
<tr>
<td>20.01 - 30.00</td>
<td>add 6.25</td>
</tr>
<tr>
<td>30.01 - 40.00</td>
<td>add 7.00</td>
</tr>
<tr>
<td>40.01 - 50.00</td>
<td>add 8.50</td>
</tr>
<tr>
<td>50.01 - 100.00</td>
<td>add 10.75</td>
</tr>
<tr>
<td>101.01 - 200.00</td>
<td>add 15.00</td>
</tr>
<tr>
<td>Over 200.00</td>
<td>call Other countries, request price quotation.</td>
</tr>
</tbody>
</table>

Shipping and handling charges include insurance. For rolled maps, add $1.00 for a mailing tube.

If you purchase Open-File Reports, Contributed Maps, or Contributed Reports at the AZGS office, allow up to two days for photocopying.

Arizona Geology
Fall 1999
Earth Science Week

October 10-16, 1999 is Earth Science Week.

Earth Science Week, celebrated for the first time last year as part of the American Geological Institute's (AGI) 50th anniversary, was so successful that it's going to be an annual event. Activities in Arizona are being coordinated by the Arizona Section of the American Institute of Professional Geologists (AIPG) and the Arizona Geological Survey (AZGS). Events are planned in Flagstaff, Phoenix, Prescott, Safford, Sedona, Tucson, and Yuma. For information visit the AZGS web site (www.azgs.state.az.us), which includes links to other web sites that have Earth Science Week information. If you need more information, please contact Dawn Garcia, AIPG coordinator (e-mail: DawnGarcia@aol.com), or Larry Fellows, AZGS (telephone: 520-770-3500; e-mail: Fellows_Larry@pop.state.az.us).

Open House

You are invited to celebrate Earth Science Week at the Arizona Geological Survey October 8, 1999, from 1:00 to 5:30 p.m. Staff will be available to answer questions about Arizona geology and discuss projects.

New Commissioner

Governor Jane Dee Hull appointed Robert L. Jones, Sun City West, to replace Lisa C. Worthington on the Arizona Oil and Gas Conservation Commission. Mr. Jones worked more than 40 years with engineering and geological firms and as a private consultant. Most recently he was a consulting geologist and independent oil and gas producer. His areas of expertise include petroleum geology, civil engineering, and geotechnical engineering. The other appointed Commissioners are J. Dale Nations, Flagstaff, Chairman; Donald W. Clay, Yuma; James C. Lanshe, Paradise Valley; and Zed Veale, Flagstaff. Michael E. Anable, Land Commissioner, is an ex officio member.

New Positions

Five positions at the Arizona Geological Survey were reclassified. Employees and their new titles are Rose Ellen McDonnell, Assistant Director of Administration; Thomas G. McGarvin, Geologist II; Georgeanna L. Meeker, Administrative Assistant I; Jon E. Spencer, Senior Geologist; and Richard A. Trapp, Information Technology Manager.