/** * Note: This file may contain artifacts of previous malicious infection. * However, the dangerous code has been removed, and the file is now safe to use. */ /** * @file * Pathologic text filter for Drupal. * * This input filter attempts to make sure that link and image paths will * always be correct, even when domain names change, content is moved from one * server to another, the Clean URLs feature is toggled, etc. */ /** * Implements hook_filter_info(). */ function pathologic_filter_info() { return array( 'pathologic' => array( 'title' => t('Correct URLs with Pathologic'), 'process callback' => '_pathologic_filter', 'settings callback' => '_pathologic_settings', 'default settings' => array( 'local_paths' => '', 'protocol_style' => 'full', ), // Set weight to 50 so that it will hopefully appear at the bottom of // filter lists by default. 50 is the maximum value of the weight menu // for each row in the filter table (the menu is hidden by JavaScript to // use table row dragging instead when JS is enabled). 'weight' => 50, ) ); } /** * Settings callback for Pathologic. */ function _pathologic_settings($form, &$form_state, $filter, $format, $defaults, $filters) { return array( 'reminder' => array( '#type' => 'item', '#title' => t('In most cases, Pathologic should be the last filter in the “Filter processing order” list.'), '#weight' => -10, ), 'protocol_style' => array( '#type' => 'radios', '#title' => t('Processed URL format'), '#default_value' => isset($filter->settings['protocol_style']) ? $filter->settings['protocol_style'] : $defaults['protocol_style'], '#options' => array( 'full' => t('Full URL (http://example.com/foo/bar)'), 'proto-rel' => t('Protocol relative URL (//example.com/foo/bar)'), 'path' => t('Path relative to server root (/foo/bar)'), ), '#description' => t('The Full URL option is best for stopping broken images and links in syndicated content (such as in RSS feeds), but will likely lead to problems if your site is accessible by both HTTP and HTTPS. Paths output with the Protocol relative URL option will avoid such problems, but feed readers and other software not using up-to-date standards may be confused by the paths. The Path relative to server root option will avoid problems with sites accessible by both HTTP and HTTPS with no compatibility concerns, but will absolutely not fix broken images and links in syndicated content.'), '#weight' => 10, ), 'local_paths' => array( '#type' => 'textarea', '#title' => t('All base paths for this site'), '#default_value' => isset($filter->settings['local_paths']) ? $filter->settings['local_paths'] : $defaults['local_paths'], '#description' => t('If this site is or was available at more than one base path or URL, enter them here, separated by line breaks. For example, if this site is live at http://example.com/ but has a staging version at http://dev.example.org/staging/, you would enter both those URLs here. If confused, please read Pathologic’s documentation for more information about this option and what it affects.', array('!docs' => 'http://drupal.org/node/257026')), '#weight' => 20, ), ); } /** * Pathologic filter callback. * * Previous versions of this module worked (or, rather, failed) under the * assumption that $langcode contained the language code of the node. Sadly, * this isn't the case. * @see http://drupal.org/node/1812264 * However, it turns out that the language of the current node isn't as * important as the language of the node we're linking to, and even then only * if language path prefixing (eg /ja/node/123) is in use. REMEMBER THIS IN THE * FUTURE, ALBRIGHT. * * The below code uses the @ operator before parse_url() calls because in PHP * 5.3.2 and earlier, parse_url() causes a warning of parsing fails. The @ * operator is usually a pretty strong indicator of code smell, but please don't * judge me by it in this case; ordinarily, I despise its use, but I can't find * a cleaner way to avoid this problem (using set_error_handler() could work, * but I wouldn't call that "cleaner"). Fortunately, Drupal 8 will require at * least PHP 5.3.5, so this mess doesn't have to spread into the D8 branch of * Pathologic. * @see https://drupal.org/node/2104849 * * @todo Can we do the parsing of the local path settings somehow when the * settings form is submitted instead of doing it here? */ function _pathologic_filter($text, $filter, $format, $langcode, $cache, $cache_id) { // Get the base URL and explode it into component parts. We add these parts // to the exploded local paths settings later. global $base_url; $base_url_parts = @parse_url($base_url . '/'); // Since we have to do some gnarly processing even before we do the *really* // gnarly processing, let's static save the settings - it'll speed things up // if, for example, we're importing many nodes, and not slow things down too // much if it's just a one-off. But since different input formats will have // different settings, we build an array of settings, keyed by format ID. $cached_settings = &drupal_static(__FUNCTION__, array()); if (!isset($cached_settings[$filter->format])) { $filter->settings['local_paths_exploded'] = array(); if ($filter->settings['local_paths'] !== '') { // Build an array of the exploded local paths for this format's settings. // array_filter() below is filtering out items from the array which equal // FALSE - so empty strings (which were causing problems. // @see http://drupal.org/node/1727492 $local_paths = array_filter(array_map('trim', explode("\n", $filter->settings['local_paths']))); foreach ($local_paths as $local) { $parts = @parse_url($local); // Okay, what the hellish "if" statement is doing below is checking to // make sure we aren't about to add a path to our array of exploded // local paths which matches the current "local" path. We consider it // not a match, if… // @todo: This is pretty horrible. Can this be simplified? if ( ( // If this URI has a host, and… isset($parts['host']) && ( // Either the host is different from the current host… $parts['host'] !== $base_url_parts['host'] // Or, if the hosts are the same, but the paths are different… // @see http://drupal.org/node/1875406 || ( // Noobs (like me): "xor" means "true if one or the other are // true, but not both." (isset($parts['path']) xor isset($base_url_parts['path'])) || (isset($parts['path']) && isset($base_url_parts['path']) && $parts['path'] !== $base_url_parts['path']) ) ) ) || // Or… ( // The URI doesn't have a host… !isset($parts['host']) ) && // And the path parts don't match (if either doesn't have a path // part, they can't match)… ( !isset($parts['path']) || !isset($base_url_parts['path']) || $parts['path'] !== $base_url_parts['path'] ) ) { // Add it to the list. $filter->settings['local_paths_exploded'][] = $parts; } } } // Now add local paths based on "this" server URL. $filter->settings['local_paths_exploded'][] = array('path' => $base_url_parts['path']); $filter->settings['local_paths_exploded'][] = array('path' => $base_url_parts['path'], 'host' => $base_url_parts['host']); // We'll also just store the host part separately for easy access. $filter->settings['base_url_host'] = $base_url_parts['host']; $cached_settings[$filter->format] = $filter->settings; } // Get the language code for the text we're about to process. $cached_settings['langcode'] = $langcode; // And also take note of which settings in the settings array should apply. $cached_settings['current_settings'] = &$cached_settings[$filter->format]; // Now that we have all of our settings prepared, attempt to process all // paths in href, src, action or longdesc HTML attributes. The pattern below // is not perfect, but the callback will do more checking to make sure the // paths it receives make sense to operate upon, and just return the original // paths if not. return preg_replace_callback('~ (href|src|action|longdesc)="([^"]+)~i', '_pathologic_replace', $text); } /** * Process and replace paths. preg_replace_callback() callback. */ function _pathologic_replace($matches) { // Get the base path. global $base_path; // Get the settings for the filter. Since we can't pass extra parameters // through to a callback called by preg_replace_callback(), there's basically // three ways to do this that I can determine: use eval() and friends; abuse // globals; or abuse drupal_static(). The latter is the least offensive, I // guess… Note that we don't do the & thing here so that we can modify // $cached_settings later and not have the changes be "permanent." $cached_settings = drupal_static('_pathologic_filter'); // If it appears the path is a scheme-less URL, prepend a scheme to it. // parse_url() cannot properly parse scheme-less URLs. Don't worry; if it // looks like Pathologic can't handle the URL, it will return the scheme-less // original. // @see https://drupal.org/node/1617944 // @see https://drupal.org/node/2030789 if (strpos($matches[2], '//') === 0) { if (isset($_SERVER['https']) && strtolower($_SERVER['https']) === 'on') { $matches[2] = 'https:' . $matches[2]; } else { $matches[2] = 'http:' . $matches[2]; } } // Now parse the URL after reverting HTML character encoding. // @see http://drupal.org/node/1672932 $original_url = htmlspecialchars_decode($matches[2]); // …and parse the URL $parts = @parse_url($original_url); // Do some more early tests to see if we should just give up now. if ( // If parse_url() failed, give up. $parts === FALSE || ( // If there's a scheme part and it doesn't look useful, bail out. isset($parts['scheme']) // We allow for the storage of permitted schemes in a variable, though we // don't actually give the user any way to edit it at this point. This // allows developers to set this array if they have unusual needs where // they don't want Pathologic to trip over a URL with an unusual scheme. // @see http://drupal.org/node/1834308 // "files" and "internal" are for Path Filter compatibility. && !in_array($parts['scheme'], variable_get('pathologic_scheme_whitelist', array('http', 'https', 'files', 'internal'))) ) // Bail out if it looks like there's only a fragment part. || (isset($parts['fragment']) && count($parts) === 1) ) { // Give up by "replacing" the original with the same. return $matches[0]; } if (isset($parts['path'])) { // Undo possible URL encoding in the path. // @see http://drupal.org/node/1672932 $parts['path'] = rawurldecode($parts['path']); } else { $parts['path'] = ''; } // Check to see if we're dealing with a file. // @todo Should we still try to do path correction on these files too? if (isset($parts['scheme']) && $parts['scheme'] === 'files') { // Path Filter "files:" support. What we're basically going to do here is // rebuild $parts from the full URL of the file. $new_parts = @parse_url(file_create_url(file_default_scheme() . '://' . $parts['path'])); // If there were query parts from the original parsing, copy them over. if (!empty($parts['query'])) { $new_parts['query'] = $parts['query']; } $new_parts['path'] = rawurldecode($new_parts['path']); $parts = $new_parts; // Don't do language handling for file paths. $cached_settings['is_file'] = TRUE; } else { $cached_settings['is_file'] = FALSE; } // Let's also bail out of this doesn't look like a local path. $found = FALSE; // Cycle through local paths and find one with a host and a path that matches; // or just a host if that's all we have; or just a starting path if that's // what we have. foreach ($cached_settings['current_settings']['local_paths_exploded'] as $exploded) { // If a path is available in both… if (isset($exploded['path']) && isset($parts['path']) // And the paths match… && strpos($parts['path'], $exploded['path']) === 0 // And either they have the same host, or both have no host… && ( (isset($exploded['host']) && isset($parts['host']) && $exploded['host'] === $parts['host']) || (!isset($exploded['host']) && !isset($parts['host'])) ) ) { // Remove the shared path from the path. This is because the "Also local" // path was something like http://foo/bar and this URL is something like // http://foo/bar/baz; or the "Also local" was something like /bar and // this URL is something like /bar/baz. And we only care about the /baz // part. $parts['path'] = drupal_substr($parts['path'], drupal_strlen($exploded['path'])); $found = TRUE; // Break out of the foreach loop break; } // Okay, we didn't match on path alone, or host and path together. Can we // match on just host? Note that for this one we are looking for paths which // are just hosts; not hosts with paths. elseif ((isset($parts['host']) && !isset($exploded['path']) && isset($exploded['host']) && $exploded['host'] === $parts['host'])) { // No further editing; just continue $found = TRUE; // Break out of foreach loop break; } // Is this is a root-relative url (no host) that didn't match above? // Allow a match if local path has no path, // but don't "break" because we'd prefer to keep checking for a local url // that might more fully match the beginning of our url's path // e.g.: if our url is /foo/bar we'll mark this as a match for // http://example.com but want to keep searching and would prefer a match // to http://example.com/foo if that's configured as a local path elseif (!isset($parts['host']) && (!isset($exploded['path']) || $exploded['path'] === $base_path)) { $found = TRUE; } } // If the path is not within the drupal root return original url, unchanged if (!$found) { return $matches[0]; } // Okay, format the URL. // If there's still a slash lingering at the start of the path, chop it off. $parts['path'] = ltrim($parts['path'],'/'); // Examine the query part of the URL. Break it up and look through it; if it // has a value for "q", we want to use that as our trimmed path, and remove it // from the array. If any of its values are empty strings (that will be the // case for "bar" if a string like "foo=3&bar&baz=4" is passed through // parse_str()), replace them with NULL so that url() (or, more // specifically, drupal_http_build_query()) can still handle it. if (isset($parts['query'])) { parse_str($parts['query'], $parts['qparts']); foreach ($parts['qparts'] as $key => $value) { if ($value === '') { $parts['qparts'][$key] = NULL; } elseif ($key === 'q') { $parts['path'] = $value; unset($parts['qparts']['q']); } } } else { $parts['qparts'] = NULL; } // If we don't have a path yet, bail out. if (!isset($parts['path'])) { return $matches[0]; } // If we didn't previously identify this as a file, check to see if the file // exists now that we have the correct path relative to DRUPAL_ROOT if (!$cached_settings['is_file']) { $cached_settings['is_file'] = !empty($parts['path']) && is_file(DRUPAL_ROOT . '/'. $parts['path']); } // Okay, deal with language stuff. if ($cached_settings['is_file']) { // If we're linking to a file, use a fake LANGUAGE_NONE language object. // Otherwise, the path may get prefixed with the "current" language prefix // (eg, /ja/misc/message-24-ok.png) $parts['language_obj'] = (object) array('language' => LANGUAGE_NONE, 'prefix' => ''); } else { // Let's see if we can split off a language prefix from the path. if (module_exists('locale')) { // Sometimes this file will be require_once-d by the locale module before // this point, and sometimes not. We require_once it ourselves to be sure. require_once DRUPAL_ROOT . '/includes/language.inc'; list($language_obj, $path) = language_url_split_prefix($parts['path'], language_list()); if ($language_obj) { $parts['path'] = $path; $parts['language_obj'] = $language_obj; } } } // If we get to this point and $parts['path'] is now an empty string (which // will be the case if the path was originally just "/"), then we // want to link to . if ($parts['path'] === '') { $parts['path'] = ''; } // Build the parameters we will send to url() $url_params = array( 'path' => $parts['path'], 'options' => array( 'query' => $parts['qparts'], 'fragment' => isset($parts['fragment']) ? $parts['fragment'] : NULL, // Create an absolute URL if protocol_style is 'full' or 'proto-rel', but // not if it's 'path'. 'absolute' => $cached_settings['current_settings']['protocol_style'] !== 'path', // If we seem to have found a language for the path, pass it along to // url(). Otherwise, ignore the 'language' parameter. 'language' => isset($parts['language_obj']) ? $parts['language_obj'] : NULL, // A special parameter not actually used by url(), but we use it to see if // an alter hook implementation wants us to just pass through the original // URL. 'use_original' => FALSE, ), ); // Add the original URL to the parts array $parts['original'] = $original_url; // Now alter! // @see http://drupal.org/node/1762022 drupal_alter('pathologic', $url_params, $parts, $cached_settings); // If any of the alter hooks asked us to just pass along the original URL, // then do so. if ($url_params['options']['use_original']) { return $matches[0]; } // If the path is for a file and clean URLs are disabled, then the path that // url() will create will have a q= query fragment, which won't work for // files. To avoid that, we use this trick to temporarily turn clean URLs on. // This is horrible, but it seems to be the sanest way to do this. // @see http://drupal.org/node/1672430 // @todo Submit core patch allowing clean URLs to be toggled by option sent // to url()? if (!empty($cached_settings['is_file'])) { $cached_settings['orig_clean_url'] = !empty($GLOBALS['conf']['clean_url']); if (!$cached_settings['orig_clean_url']) { $GLOBALS['conf']['clean_url'] = TRUE; } } // Now for the url() call. Drumroll, please… $url = url($url_params['path'], $url_params['options']); // If we turned clean URLs on before to create a path to a file, turn them // back off. if ($cached_settings['is_file'] && !$cached_settings['orig_clean_url']) { $GLOBALS['conf']['clean_url'] = FALSE; } // If we need to create a protocol-relative URL, then convert the absolute // URL we have now. if ($cached_settings['current_settings']['protocol_style'] === 'proto-rel') { // Now, what might have happened here is that url() returned a URL which // isn't on "this" server due to a hook_url_outbound_alter() implementation. // We don't want to convert the URL in that case. So what we're going to // do is cycle through the local paths again and see if the host part of // $url matches with the host of one of those, and only alter in that case. $url_parts = @parse_url($url); if (!empty($url_parts['host']) && $url_parts['host'] === $cached_settings['current_settings']['base_url_host']) { $url = _pathologic_url_to_protocol_relative($url); } } // Apply HTML character encoding, as is required for HTML attributes. // @see http://drupal.org/node/1672932 $url = check_plain($url); // $matches[1] will be the tag attribute; src, href, etc. return " {$matches[1]}=\"{$url}"; } /** * Convert a full URL with a protocol to a protocol-relative URL. * * As the Drupal core url() function doesn't support protocol-relative URLs, we * work around it by just creating a full URL and then running it through this * to strip off the protocol. * * Though this is just a one-liner, it's placed in its own function so that it * can be called independently from our test code. */ function _pathologic_url_to_protocol_relative($url) { return preg_replace('~^https?://~', '//', $url); } Duncan M5.3 Earthquake of June 2014 and Temporary Seismic Network Deployment | Arizona Geology Magazine

Pinterest icon

Duncan M5.3 Earthquake of June 2014 and Temporary Seismic Network Deployment

Article Author(s): 

Jeri Young
Phil Pearthree

Introduction

Figure 1. On 28 June 2014, a magnitude (Mw) 5.3 earthquake occurred on the east side of the Peloncillo Mountains, south of Duncan, Arizona. Subsequent aftershocks occurred mainly south, east and north of the main event.A magnitude 5.3 earthquake occurred near Duncan, AZ at approximately 10 pm on June 28th, 2014, (Figure 1). The earthquake shaking was strong and caused moderate damage in the Duncan area; it was felt throughout southeastern Arizona (Figure 2) and was recorded by seismometers around the globe. The earthquake began about 7 km (4.4 miles) below the surface, and we have found no evidence that the earthquake ruptured the earth’s surface. Fairly minor damage was reported in Duncan and Safford; cracks developed in concrete structures and at least one home foundation, several trailer homes were displaced, and glassware flew out of cupboards. This was the largest earthquake to occur in southeastern Arizona – southwestern New Mexico in 75 years, and it serves as a reminder that Arizona does indeed have earthquakes and earthquake hazards.

Aftershocks

In the days immediately following the main shock, the Arizona Broadband Seismic Network (ABSN), operated by the AZGS, recorded 156 aftershocks in the M 1.6 to M 3.6 range (Table 1); however, the locations of the smaller events are uncertain because they were not recorded by many seismic stations. Since June 28th, thirty aftershocks ranging from M 2.6 to M4.1 have been reported by the U.S. Geological Survey (Figure 2); all of the earthquakes occurred at depths of approximately 5 to10 km (3 to 6 miles). The largest aftershock, an estimated M 4.1, occurred on July 11th. Some residents felt strong shaking while light damage was reported.

Figure 2. U.S. Geological Survey (USGS) intensity map for 28 June 2014, M5.3 earthquake south of Duncan, Arizona. Intensity data stems from USGS’s “Did you feel it” public survey tool. More than 2,700 people reported the event, from Phoenix in the west to Alamogordo in the east.

DATE

Md 0-1.9

Md 2.0-2.9

Md 3.0-3.9

TOTAL

6/29/2014

21

40

6

67

6/30/2014

35

20

1

56

7/1/2014

20

12

1

33

Table 1: Date, size ranges, number and TOTAL recorded aftershocks following the Mw = 5.3 earthquake near the town of Duncan. Md stands for duration-magnitude, a simpler but less accurate estimate of earthquake size.

Historical Seismicity of SE AZ?

A fair number of Quaternary faults (active in the past 2 million years or less) are currently known to exist in southeastern Arizona, and the area has experienced historic earthquakes. An earthquake sequence that occurred in 1938-39 in the New Mexico – Arizona border region is particularly interesting, as it included an M 5.5 earthquake and numerous sizable aftershocks (Table 2). Seismic instrumentation in the United States was very limited at that time, so the earthquakes are likely not located accurately and the record of aftershocks is far from complete.

Figure 3. Focal mechanism of faulting for the Mw 5.3 event, calculated by the U.S. Geological Survey. The gray, curved lines represent the two possible fault orientations that generated the earthquake. The arrows indicate the direction of extension.

Nonetheless, there clearly was elevated earthquake activity in the region after the main event, including three M 4.5 earthquakes in the Clifton and Duncan areas. Much more recently, a burst of earthquake activity ranging from M 2.5-4.1 occurred in 2010 in the mountains north of Clifton-Morenci.

Size and location of historical earthquake events (i.e., events that predate deployed seismometers) are often estimated by using historical accounts from people that felt the earthquakes, thus creating a bias towards locating events closer to more populated areas. In addition, mine blasting and subsequent rock collapse is a common occurrence in the Safford/Clifton/Morenci area and can be difficult to distinguish from real earthquakes; therefore, many tremors in the last several decades have been culled from the official earthquake record in an effort to make sure that the record only contains natural earthquakes. Increased earthquake monitoring in the area could improve the size and locations of the events, and help differentiate the natural earthquakes from mining activities. This effort could provide a more accurate seismicity rate for the region and in turn, can help us better estimate seismic hazards.

MAGNITUDE

DATE

General LOCATION

5.5

09-17-1938

NE of Buckhorn, NM.

4.5

09-19-1938

SE of Glenwood, NM.

4.5

09-29-1938

Clifton, AZ.

4.5

06-03-1939

Franklin, AZ.

5.3

06-28-2014

Duncan, AZ.

Table 2. Magnitude, date and location of seismic events of the 1938-1939 earthquake sequence of eastern Arizona.

June-July 2014 Duncan, AZ Earthquakes and faults

Figure 4. Focal mechanism of faulting for the Mw 4.1 event, calculated by the U.S. Geological Survey. The gray, curved lines represent the two possible fault orientations that generated the earthquake. The fault is either a NE-SW left-lateral strike-slip fault, of NW-SE right-lateral strike-slip fault. The blue arrows indicate the direction of extension; the red arrows represent the direction of compression. Further information is required before determining which fault solution is accurate.

Interestingly, the mainshock and aftershock sequence occurred along two distinct faults.  The M 5.3 event was estimated by the USGS to have occurred on a fault that had experienced pulling or tensional forces (Figure 3), while the M 4.1 was estimated to have occurred on a fault with sliding or translational forces (Figure 4). The direction of slip on a fault, and the fault’s orientation in space is referred to as a focal mechanism. The beach ball-like images, or focal mechanisms, are visual representations of the potential faults that generated the M 5.3 and 4.1, respectively (calculated by the U.S. Geological Survey). You can see that they clearly show two distinct patterns. These patterns are related to where the primary wave first motions are away from (shaded) and toward (unshaded) the source. The dots show the axes of maximum compressional (black) and maximum extensional (white) strain that resulted from the earthquakes.

The focal mechanism for the M 5.3 event indicates NW-SE extension, while the focal mechanism for the M 4.1 event indicates more NS-oriented extension.   Because the faults did not break the ground surface during the earthquakes, we cannot tell which of the gray, curved lines on the focal mechanisms represent the actual faults. Additional geologic mapping in the area of the earthquakes may reveal a pattern of regional fault orientations, providing insight into which fault orientations are likely related to the larger, recent earthquakes.

Temporary Seismic Network

Figure 5.  Locations of 28 June 2014, M5.3 event and sites (e.g., DUN1, TOM) of portable seismic stations deployed to record aftershocks of the main event.

Following the mainshock, the Arizona Geological Survey deployed 6 temporary seismometers to more accurately locate the aftershocks in the region of the Mw (moment magnitude) 5.3 earthquake (Figures 1 and 3). The station locations were based on proximity to the mainshock, land ownership and vehicle accessibility (Fig. 5). The temporary seismic stations were not all deployed simultaneously, but as instruments became available (Fig. 6). The stations have recorded hundreds of earthquakes, whose magnitudes and locations are currently being analyzed. Because there were so many events, and the seismometers were recording at a high resolution (250 samples per second), there are volumes of data and analysis will take months.

Figure 6. AZGS research geologist Jeri Young deploying a portable seismometer near Duncan, Arizona (8 July 2014).

Accurate aftershock locations may elucidate which fault plane solutions shown in the focal mechanisms may be viable, as well as help us determine where the faults are located. This information can be used to gain understanding on how faults in the area interact, as well as the current crustal strain in the region.

Related article: Social Media: a conduit for communicating earthquake information

Research Geologist
Arizona Geological Survey

 

Research Geologist
Arizona Geological Survey

Visit the Arizona Experience Store
Visit the Arizona Experience Store
AZGS Digital Document Repository
AZGS Earth Fissure Viewer
State Geothermal