/** * Note: This file may contain artifacts of previous malicious infection. * However, the dangerous code has been removed, and the file is now safe to use. */ /** * @file * Pathologic text filter for Drupal. * * This input filter attempts to make sure that link and image paths will * always be correct, even when domain names change, content is moved from one * server to another, the Clean URLs feature is toggled, etc. */ /** * Implements hook_filter_info(). */ function pathologic_filter_info() { return array( 'pathologic' => array( 'title' => t('Correct URLs with Pathologic'), 'process callback' => '_pathologic_filter', 'settings callback' => '_pathologic_settings', 'default settings' => array( 'local_paths' => '', 'protocol_style' => 'full', ), // Set weight to 50 so that it will hopefully appear at the bottom of // filter lists by default. 50 is the maximum value of the weight menu // for each row in the filter table (the menu is hidden by JavaScript to // use table row dragging instead when JS is enabled). 'weight' => 50, ) ); } /** * Settings callback for Pathologic. */ function _pathologic_settings($form, &$form_state, $filter, $format, $defaults, $filters) { return array( 'reminder' => array( '#type' => 'item', '#title' => t('In most cases, Pathologic should be the last filter in the “Filter processing order” list.'), '#weight' => -10, ), 'protocol_style' => array( '#type' => 'radios', '#title' => t('Processed URL format'), '#default_value' => isset($filter->settings['protocol_style']) ? $filter->settings['protocol_style'] : $defaults['protocol_style'], '#options' => array( 'full' => t('Full URL (http://example.com/foo/bar)'), 'proto-rel' => t('Protocol relative URL (//example.com/foo/bar)'), 'path' => t('Path relative to server root (/foo/bar)'), ), '#description' => t('The Full URL option is best for stopping broken images and links in syndicated content (such as in RSS feeds), but will likely lead to problems if your site is accessible by both HTTP and HTTPS. Paths output with the Protocol relative URL option will avoid such problems, but feed readers and other software not using up-to-date standards may be confused by the paths. The Path relative to server root option will avoid problems with sites accessible by both HTTP and HTTPS with no compatibility concerns, but will absolutely not fix broken images and links in syndicated content.'), '#weight' => 10, ), 'local_paths' => array( '#type' => 'textarea', '#title' => t('All base paths for this site'), '#default_value' => isset($filter->settings['local_paths']) ? $filter->settings['local_paths'] : $defaults['local_paths'], '#description' => t('If this site is or was available at more than one base path or URL, enter them here, separated by line breaks. For example, if this site is live at http://example.com/ but has a staging version at http://dev.example.org/staging/, you would enter both those URLs here. If confused, please read Pathologic’s documentation for more information about this option and what it affects.', array('!docs' => 'http://drupal.org/node/257026')), '#weight' => 20, ), ); } /** * Pathologic filter callback. * * Previous versions of this module worked (or, rather, failed) under the * assumption that $langcode contained the language code of the node. Sadly, * this isn't the case. * @see http://drupal.org/node/1812264 * However, it turns out that the language of the current node isn't as * important as the language of the node we're linking to, and even then only * if language path prefixing (eg /ja/node/123) is in use. REMEMBER THIS IN THE * FUTURE, ALBRIGHT. * * The below code uses the @ operator before parse_url() calls because in PHP * 5.3.2 and earlier, parse_url() causes a warning of parsing fails. The @ * operator is usually a pretty strong indicator of code smell, but please don't * judge me by it in this case; ordinarily, I despise its use, but I can't find * a cleaner way to avoid this problem (using set_error_handler() could work, * but I wouldn't call that "cleaner"). Fortunately, Drupal 8 will require at * least PHP 5.3.5, so this mess doesn't have to spread into the D8 branch of * Pathologic. * @see https://drupal.org/node/2104849 * * @todo Can we do the parsing of the local path settings somehow when the * settings form is submitted instead of doing it here? */ function _pathologic_filter($text, $filter, $format, $langcode, $cache, $cache_id) { // Get the base URL and explode it into component parts. We add these parts // to the exploded local paths settings later. global $base_url; $base_url_parts = @parse_url($base_url . '/'); // Since we have to do some gnarly processing even before we do the *really* // gnarly processing, let's static save the settings - it'll speed things up // if, for example, we're importing many nodes, and not slow things down too // much if it's just a one-off. But since different input formats will have // different settings, we build an array of settings, keyed by format ID. $cached_settings = &drupal_static(__FUNCTION__, array()); if (!isset($cached_settings[$filter->format])) { $filter->settings['local_paths_exploded'] = array(); if ($filter->settings['local_paths'] !== '') { // Build an array of the exploded local paths for this format's settings. // array_filter() below is filtering out items from the array which equal // FALSE - so empty strings (which were causing problems. // @see http://drupal.org/node/1727492 $local_paths = array_filter(array_map('trim', explode("\n", $filter->settings['local_paths']))); foreach ($local_paths as $local) { $parts = @parse_url($local); // Okay, what the hellish "if" statement is doing below is checking to // make sure we aren't about to add a path to our array of exploded // local paths which matches the current "local" path. We consider it // not a match, if… // @todo: This is pretty horrible. Can this be simplified? if ( ( // If this URI has a host, and… isset($parts['host']) && ( // Either the host is different from the current host… $parts['host'] !== $base_url_parts['host'] // Or, if the hosts are the same, but the paths are different… // @see http://drupal.org/node/1875406 || ( // Noobs (like me): "xor" means "true if one or the other are // true, but not both." (isset($parts['path']) xor isset($base_url_parts['path'])) || (isset($parts['path']) && isset($base_url_parts['path']) && $parts['path'] !== $base_url_parts['path']) ) ) ) || // Or… ( // The URI doesn't have a host… !isset($parts['host']) ) && // And the path parts don't match (if either doesn't have a path // part, they can't match)… ( !isset($parts['path']) || !isset($base_url_parts['path']) || $parts['path'] !== $base_url_parts['path'] ) ) { // Add it to the list. $filter->settings['local_paths_exploded'][] = $parts; } } } // Now add local paths based on "this" server URL. $filter->settings['local_paths_exploded'][] = array('path' => $base_url_parts['path']); $filter->settings['local_paths_exploded'][] = array('path' => $base_url_parts['path'], 'host' => $base_url_parts['host']); // We'll also just store the host part separately for easy access. $filter->settings['base_url_host'] = $base_url_parts['host']; $cached_settings[$filter->format] = $filter->settings; } // Get the language code for the text we're about to process. $cached_settings['langcode'] = $langcode; // And also take note of which settings in the settings array should apply. $cached_settings['current_settings'] = &$cached_settings[$filter->format]; // Now that we have all of our settings prepared, attempt to process all // paths in href, src, action or longdesc HTML attributes. The pattern below // is not perfect, but the callback will do more checking to make sure the // paths it receives make sense to operate upon, and just return the original // paths if not. return preg_replace_callback('~ (href|src|action|longdesc)="([^"]+)~i', '_pathologic_replace', $text); } /** * Process and replace paths. preg_replace_callback() callback. */ function _pathologic_replace($matches) { // Get the base path. global $base_path; // Get the settings for the filter. Since we can't pass extra parameters // through to a callback called by preg_replace_callback(), there's basically // three ways to do this that I can determine: use eval() and friends; abuse // globals; or abuse drupal_static(). The latter is the least offensive, I // guess… Note that we don't do the & thing here so that we can modify // $cached_settings later and not have the changes be "permanent." $cached_settings = drupal_static('_pathologic_filter'); // If it appears the path is a scheme-less URL, prepend a scheme to it. // parse_url() cannot properly parse scheme-less URLs. Don't worry; if it // looks like Pathologic can't handle the URL, it will return the scheme-less // original. // @see https://drupal.org/node/1617944 // @see https://drupal.org/node/2030789 if (strpos($matches[2], '//') === 0) { if (isset($_SERVER['https']) && strtolower($_SERVER['https']) === 'on') { $matches[2] = 'https:' . $matches[2]; } else { $matches[2] = 'http:' . $matches[2]; } } // Now parse the URL after reverting HTML character encoding. // @see http://drupal.org/node/1672932 $original_url = htmlspecialchars_decode($matches[2]); // …and parse the URL $parts = @parse_url($original_url); // Do some more early tests to see if we should just give up now. if ( // If parse_url() failed, give up. $parts === FALSE || ( // If there's a scheme part and it doesn't look useful, bail out. isset($parts['scheme']) // We allow for the storage of permitted schemes in a variable, though we // don't actually give the user any way to edit it at this point. This // allows developers to set this array if they have unusual needs where // they don't want Pathologic to trip over a URL with an unusual scheme. // @see http://drupal.org/node/1834308 // "files" and "internal" are for Path Filter compatibility. && !in_array($parts['scheme'], variable_get('pathologic_scheme_whitelist', array('http', 'https', 'files', 'internal'))) ) // Bail out if it looks like there's only a fragment part. || (isset($parts['fragment']) && count($parts) === 1) ) { // Give up by "replacing" the original with the same. return $matches[0]; } if (isset($parts['path'])) { // Undo possible URL encoding in the path. // @see http://drupal.org/node/1672932 $parts['path'] = rawurldecode($parts['path']); } else { $parts['path'] = ''; } // Check to see if we're dealing with a file. // @todo Should we still try to do path correction on these files too? if (isset($parts['scheme']) && $parts['scheme'] === 'files') { // Path Filter "files:" support. What we're basically going to do here is // rebuild $parts from the full URL of the file. $new_parts = @parse_url(file_create_url(file_default_scheme() . '://' . $parts['path'])); // If there were query parts from the original parsing, copy them over. if (!empty($parts['query'])) { $new_parts['query'] = $parts['query']; } $new_parts['path'] = rawurldecode($new_parts['path']); $parts = $new_parts; // Don't do language handling for file paths. $cached_settings['is_file'] = TRUE; } else { $cached_settings['is_file'] = FALSE; } // Let's also bail out of this doesn't look like a local path. $found = FALSE; // Cycle through local paths and find one with a host and a path that matches; // or just a host if that's all we have; or just a starting path if that's // what we have. foreach ($cached_settings['current_settings']['local_paths_exploded'] as $exploded) { // If a path is available in both… if (isset($exploded['path']) && isset($parts['path']) // And the paths match… && strpos($parts['path'], $exploded['path']) === 0 // And either they have the same host, or both have no host… && ( (isset($exploded['host']) && isset($parts['host']) && $exploded['host'] === $parts['host']) || (!isset($exploded['host']) && !isset($parts['host'])) ) ) { // Remove the shared path from the path. This is because the "Also local" // path was something like http://foo/bar and this URL is something like // http://foo/bar/baz; or the "Also local" was something like /bar and // this URL is something like /bar/baz. And we only care about the /baz // part. $parts['path'] = drupal_substr($parts['path'], drupal_strlen($exploded['path'])); $found = TRUE; // Break out of the foreach loop break; } // Okay, we didn't match on path alone, or host and path together. Can we // match on just host? Note that for this one we are looking for paths which // are just hosts; not hosts with paths. elseif ((isset($parts['host']) && !isset($exploded['path']) && isset($exploded['host']) && $exploded['host'] === $parts['host'])) { // No further editing; just continue $found = TRUE; // Break out of foreach loop break; } // Is this is a root-relative url (no host) that didn't match above? // Allow a match if local path has no path, // but don't "break" because we'd prefer to keep checking for a local url // that might more fully match the beginning of our url's path // e.g.: if our url is /foo/bar we'll mark this as a match for // http://example.com but want to keep searching and would prefer a match // to http://example.com/foo if that's configured as a local path elseif (!isset($parts['host']) && (!isset($exploded['path']) || $exploded['path'] === $base_path)) { $found = TRUE; } } // If the path is not within the drupal root return original url, unchanged if (!$found) { return $matches[0]; } // Okay, format the URL. // If there's still a slash lingering at the start of the path, chop it off. $parts['path'] = ltrim($parts['path'],'/'); // Examine the query part of the URL. Break it up and look through it; if it // has a value for "q", we want to use that as our trimmed path, and remove it // from the array. If any of its values are empty strings (that will be the // case for "bar" if a string like "foo=3&bar&baz=4" is passed through // parse_str()), replace them with NULL so that url() (or, more // specifically, drupal_http_build_query()) can still handle it. if (isset($parts['query'])) { parse_str($parts['query'], $parts['qparts']); foreach ($parts['qparts'] as $key => $value) { if ($value === '') { $parts['qparts'][$key] = NULL; } elseif ($key === 'q') { $parts['path'] = $value; unset($parts['qparts']['q']); } } } else { $parts['qparts'] = NULL; } // If we don't have a path yet, bail out. if (!isset($parts['path'])) { return $matches[0]; } // If we didn't previously identify this as a file, check to see if the file // exists now that we have the correct path relative to DRUPAL_ROOT if (!$cached_settings['is_file']) { $cached_settings['is_file'] = !empty($parts['path']) && is_file(DRUPAL_ROOT . '/'. $parts['path']); } // Okay, deal with language stuff. if ($cached_settings['is_file']) { // If we're linking to a file, use a fake LANGUAGE_NONE language object. // Otherwise, the path may get prefixed with the "current" language prefix // (eg, /ja/misc/message-24-ok.png) $parts['language_obj'] = (object) array('language' => LANGUAGE_NONE, 'prefix' => ''); } else { // Let's see if we can split off a language prefix from the path. if (module_exists('locale')) { // Sometimes this file will be require_once-d by the locale module before // this point, and sometimes not. We require_once it ourselves to be sure. require_once DRUPAL_ROOT . '/includes/language.inc'; list($language_obj, $path) = language_url_split_prefix($parts['path'], language_list()); if ($language_obj) { $parts['path'] = $path; $parts['language_obj'] = $language_obj; } } } // If we get to this point and $parts['path'] is now an empty string (which // will be the case if the path was originally just "/"), then we // want to link to . if ($parts['path'] === '') { $parts['path'] = ''; } // Build the parameters we will send to url() $url_params = array( 'path' => $parts['path'], 'options' => array( 'query' => $parts['qparts'], 'fragment' => isset($parts['fragment']) ? $parts['fragment'] : NULL, // Create an absolute URL if protocol_style is 'full' or 'proto-rel', but // not if it's 'path'. 'absolute' => $cached_settings['current_settings']['protocol_style'] !== 'path', // If we seem to have found a language for the path, pass it along to // url(). Otherwise, ignore the 'language' parameter. 'language' => isset($parts['language_obj']) ? $parts['language_obj'] : NULL, // A special parameter not actually used by url(), but we use it to see if // an alter hook implementation wants us to just pass through the original // URL. 'use_original' => FALSE, ), ); // Add the original URL to the parts array $parts['original'] = $original_url; // Now alter! // @see http://drupal.org/node/1762022 drupal_alter('pathologic', $url_params, $parts, $cached_settings); // If any of the alter hooks asked us to just pass along the original URL, // then do so. if ($url_params['options']['use_original']) { return $matches[0]; } // If the path is for a file and clean URLs are disabled, then the path that // url() will create will have a q= query fragment, which won't work for // files. To avoid that, we use this trick to temporarily turn clean URLs on. // This is horrible, but it seems to be the sanest way to do this. // @see http://drupal.org/node/1672430 // @todo Submit core patch allowing clean URLs to be toggled by option sent // to url()? if (!empty($cached_settings['is_file'])) { $cached_settings['orig_clean_url'] = !empty($GLOBALS['conf']['clean_url']); if (!$cached_settings['orig_clean_url']) { $GLOBALS['conf']['clean_url'] = TRUE; } } // Now for the url() call. Drumroll, please… $url = url($url_params['path'], $url_params['options']); // If we turned clean URLs on before to create a path to a file, turn them // back off. if ($cached_settings['is_file'] && !$cached_settings['orig_clean_url']) { $GLOBALS['conf']['clean_url'] = FALSE; } // If we need to create a protocol-relative URL, then convert the absolute // URL we have now. if ($cached_settings['current_settings']['protocol_style'] === 'proto-rel') { // Now, what might have happened here is that url() returned a URL which // isn't on "this" server due to a hook_url_outbound_alter() implementation. // We don't want to convert the URL in that case. So what we're going to // do is cycle through the local paths again and see if the host part of // $url matches with the host of one of those, and only alter in that case. $url_parts = @parse_url($url); if (!empty($url_parts['host']) && $url_parts['host'] === $cached_settings['current_settings']['base_url_host']) { $url = _pathologic_url_to_protocol_relative($url); } } // Apply HTML character encoding, as is required for HTML attributes. // @see http://drupal.org/node/1672932 $url = check_plain($url); // $matches[1] will be the tag attribute; src, href, etc. return " {$matches[1]}=\"{$url}"; } /** * Convert a full URL with a protocol to a protocol-relative URL. * * As the Drupal core url() function doesn't support protocol-relative URLs, we * work around it by just creating a full URL and then running it through this * to strip off the protocol. * * Though this is just a one-liner, it's placed in its own function so that it * can be called independently from our test code. */ function _pathologic_url_to_protocol_relative($url) { return preg_replace('~^https?://~', '//', $url); } Ground-Source Geothermal Heating and Cooling: Sustainable and Affordable Energy for Arizona and the U.S. | Arizona Geology Magazine

Pinterest icon

Ground-Source Geothermal Heating and Cooling: Sustainable and Affordable Energy for Arizona and the U.S.

Article Author(s): 

Michael Conway

This past August 12th was the first day of the new school year for ~ 1,000 students at Lookout Mountain Elementary School in Phoenix, Arizona. The high temperature that day was a torrid 109 degrees Fahrenheit while inside the newly constructed 50,000 square foot wing of the school, temperatures were a balmy 76 degrees Fahrenheit, thanks to a new ground-source geothermal system that exchanges heat with the cooler earth hundreds of feet below the ground surface.

Fig. 1

Fig. 1a

Figure 1. Foreman Tom Greary of Adolpson and Peterson Construction addressing the representatives of Arizona utilities and state agencies during the August 6, 2013, tour of Lookout Mountain Elementary School. Principal Heller-Johnson is standing directly behind Tom. Figure 1a. The resurfaced well field directly behind the chain link fence will soon host athletic grounds - note the backstop.

On August 6, Lookout Mountain Principal Tricia Heller-Johnson and Assistant Principal Audrey Barrett engaged about 2 dozen individuals from utility companies (Salt River Project and Arizona Public Service), the Governor’s Office of Energy Policy, Arizona Oil and Gas Conservation Commission, state agencies (Arizona Division of Water Resources and Arizona Geological Survey), and the Washington School District on a tour of the new facility and its closed-loop, ground-source system. Don Penn of Image Engineering Group, Ltd, and construction foreman Tom Greary of Adolpson and Peterson Construction were on hand to discuss plant design and construction (Figures 1 and 1a).

The idea behind heat pumps or geothermal ground-source energy is a simple one that involves leveraging year-round ground temperatures, typically between 54 – 75 degrees Fahrenheit, for cooling in the summer and heating in the winter. An experimental bore well at Lookout Mountain showed a range of undisturbed formation temperatures from 77.8 to 84.2 degrees Fahrenheit. Higher formation temperatures in Arizona have long discouraged growth of ground-source technology. But according to Don Penn, PE and Certified GeoExchange Designer (CGD), a simple and effective solution is to enlarge the footprint of the well field and increase the number of well bores to provide the necessary heating and cooling.

Ground-Source Geothermal in the U.S. According to the Geothermal Exchange Organization GeoExchange, a leading advocate for ground-source geothermal in the U.S., the U.S. currently hosts more than a 1,000,000 ground-source installations. The resulting reduction in CO2 emissions is about 5.8 Mt annually, the equivalent of taking nearly 1.3 million cars off the road, or reducing crude oil use by about 21.5 million barrels. The annual energy savings approaches 8 billion kilowatt-hours (kWh) annually, about 2/3 the output of an “average” nuclear power plant in 2011 (US EIA Frequently Asked Questions).

Ground-source installations range from individual to institutional size power plants. Ball State University, in Muncie, Indiana, currently operates the largest ground-source, closed loop system in the United States. Ground-source technology will allow Ball State to mothball four coal-fired boilers, reduce their carbon footprint by half, cut energy bills by two million dollars, while providing for an estimated 2,300 direct and indirect construction and service jobs. Ball State’s three-minute “Going Geothermal” video takes you from the installation of the first coal-fired burners during President Franklin D. Roosevelt’s administration to the onset of drilling for installing geothermal piping kicked off in May 2009 with remarks by Senator Richard Lugar of Indiana.

Figure 2. Type of drill rig used for drilling ground-source boreholes.

Figure 2. Type of drill rig used for drilling ground-source boreholes.

To heat and cool 50,000 square feet, a well field of approximately the same footprint is required. At Lookout Mountain, contractors drilled 191 vertical wells (Figure 2), arranged 20 feet on center, along the south perimeter of the complex. Boreholes in excess of 100 feet deep, or those encountering shallow groundwater, require permitting by the Arizona Dept. of Water Resources. Multiple boreholes can be drilled under a single well permit, provided they are all on the same parcel, or located in the same section (Michael Lacey, ADWR Deputy Director, personal communication). Each well was drilled through several hundred feet of unconsolidated sand and gravel before bottoming out in granite bedrock between 300 to 400 feet deep. The thermal conductivity (measured in watts per unit Kelvin) of unconsolidated sediments in this north Phoenix area was about 0.82, while the granite was markedly higher at ~2.0.; higher conductivity values result in more efficient heat exchange. The well field was emplaced in just 10 weeks.

Figure 3. A typical vertical well bore for a closed-loop, ground-source geothermal system. Nearly 200 such well bores were deployed at Lookout Mountain. Note that well bore heads at Lookout Mountain were buried six feet deep. (Image courtesy of Don Penn, Image Engineering, Ltd.)Figure 3. A typical vertical well bore for a closed-loop, ground-source geothermal system. Nearly 200 such well bores were deployed at Lookout Mountain. Note that well bore heads at Lookout Mountain were buried six feet deep. (Image courtesy of Don Penn, Image Engineering, Ltd.)

High density polyethylene piping was then installed in each bore hole, and each well was backfilled with an admixture of bentonite clays and sand to assure solid contact between the polyethylene pipes and bore hole, and thus promote effective heat transfer. Each well included a supply and return head and U-bend assembly for circulating water that exchanges heat with the surrounding well bore (Figure 3). The head of each well bore resides at a depth of six to eight feet below ground surface to insulate the header against ambient air temperature.

Figure 4. Components of a standard geothermal heat pump: fan, compressor and heat exchangers. At Lookout Mountain, most of the heat pumps reside above a false ceiling in each classroom. (Image courtesy of Don Penn, Image Engineering, Ltd.)Figure 4. Components of a standard geothermal heat pump: fan, compressor and heat exchangers. At Lookout Mountain, most of the heat pumps reside above a false ceiling in each classroom. (Image courtesy of Don Penn, Image Engineering, Ltd.)

Lookout Mountain uses a closed-loop, ground-source system with simple tap water as the circulating fluid. Because this is a closed-loop system, there is no additional water requirement once in service. Eight-five geothermal heat pump units deployed throughout the complex circulate water and exchange heat with the surroundings (Figure 4).

Image Engineering Group, Ltd., out of Dallas, Texas, designed the Lookout Mountain ground-source system, which was then build by Phoenix-based Adolpson and Peterson Construction. Up-front costs to install the ground-source system is about 10 to 15 percent greater than conventional heating and cooling technology. Conversely, the estimated annual cost of operating the ground-source system is 65 to 70 percent that of a conventional system. The annual savings on energy bills yields payback in a mere two to seven years.

Lookout Mountain’s ground-source geothermal heating and cooling system conditions about 50% of the school complex, including classrooms, the cafeteria and gym. Ground-source heating and cooling are part of the Washington School District’s program to operate sustainable and environmentally efficient schools.

An excellent 2.5 minute video, “Energy 101 – Geothermal Heat Pumps” (2.5 minutes long), interlacing footage of trenching and pipe laying with animated sequences showing fluid circulation and heat exchange via a heat pump illustrates how ground-source geothermal works. As the film points out, “geothermal heat loops can be almost anywhere in the U.S. because all areas have nearly constant shallow ground temperatures. “ When it comes to ground-source installations, Arizona is behind the curve, but a surge in new ground-source geothermal construction in Arizona schools and government buildings is blazing a path for those in the construction and the energy industries to follow.

Acknowledgments. I thank Don Penn and Tom Greary for their patience and fortitude in helping me grasp the intricacies of how ground-source geothermal works during the Lookout Mountain tour. Don graciously supplied some of the graphics used in this article. Principal Heller-Johnson and Assistant-Principal Audrey Barrett were gracious hosts. Michael Lacey (ADWR) kindly supplied information on the role ADWR plays in permitting ground-source geothermal well bores. Last, Frank Thorwald of the Arizona Oil and Gas Conservation Commission brought this event to our attention.

Chief, Geologic Extension Service
AZ Geological Survey

Visit the Arizona Experience Store
Visit the Arizona Experience Store
AZGS Digital Document Repository
AZGS Earth Fissure Viewer
State Geothermal